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We study a two-dimensional ferrofluid of hard-core particles with internal
degrees of freedom (plane rotators) and O(2)-invariant ferromagnetic spin
interaction. By reducing the continuous system to an approximating reference
lattice system, a lower bound for the two-spin correlation function is obtained.
This bound, together with the Fröhlich–Spencer result about the Berezinskiı̆–
Kosterlitz–Thouless transition in the two-dimension lattice system of plane
rotators, shows that our model also exhibits the same kind of ordering. Namely
for a short-range ferromagnetic interaction the two-spin correlation function
does not decay faster than some power of the inverse distance between particles,
for small temperatures and high densities of the ferrofluid. For a long-range
ferromagnetic interaction the model manifests a non-zero order parameter
(magnetization) in this domain, whereas for high temperatures spin correlations
decay exponentially.

KEY WORDS: Continuous systems; ferrofluids; plane rotators; Berezinskiı̆–
Kosterlitz–Thouless transition.

1. INTRODUCTION

This note is motivated by recent (1–3) (and not very recent (4)) interest to
phase transitions in continuous spin systems. There are many rigorous
results on phase transition of lattice systems in classical and quantum sta-
tistical mechanics. However, we have still only few models of continuum



systems where the existence of phase transition has been proved. For con-
tinuum system of several kind of particles such as the Widom–Rowlinson
model, (5) methods using Peierles’ argument, (6, 7), Pirogov–Sinai theory, (8)

and random cluster expansion (3) are successful. They prove the existence of
spatial phase transitions separating particles of different type.

Another type of arguments were invented by Gruber and Griffiths
(G-G) (4) to study an orientational phase transition in a continuum system of
particles with internal degrees of freedom, namely ‘‘charged’’ by Ising
spins. Hamiltonian of this Ising ferrofluid involves two types of interaction:
a direct positional two-particle interaction with hard core, and ferromagnetic
interaction between spins of those particles. In ref. 4, G-G used a combina-
tion of GKS and FKG inequalities to find a lower bound to the ferrofluid
magnetization (orientational order) in terms of magnetization of an
auxiliary lattice Ising model. In ref. 1, the G-G model was generalized to a
continuum system of particles equipped with essentially one dimensional
continuous spin. The existence of the orientational order for low tempera-
tures and high densities was proved for this system using the G-G argu-
ments combined with Wells’ inequality. (9, 10)

The purpose of the present paper is to apply the G-G method to prove
the existence of the Berezinskiı̆–Kosterlitz–Thouless orientational ordering in
O(2)-symmetric spin ferrofluid. We consider a two-dimensional continuum
model of particles carrying two-component unit vector spins (plane rotators).
As in refs. 1 and 4 the interaction constitutes of two parts: positional two-
particle interaction with a hard-core, and ferromagnetic O(2)-invariant
two-spin interaction between those particles. It is known (11, 12) that for a
short-range spin–spin interaction there is no spontaneous breaking of the
O(2) symmetry in this model: the Gibbs state is O(2)-invariant for all den-
sities and any non-zero temperature. This implies that the magnetic order
parameter is always null manifesting the Mermin–Wagner theorem known
for lattice O(n)-symmetric spin systems in one and two dimensions, see,
e.g., ref. 13. The main result of the present paper is the following:

Consider the two-spin correlation function of the model. We prove that
it can be bounded from below by that of an auxiliary lattice spin system.
Combining this estimate with the Fröhlich–Spencer result, (14) we find that
for low temperatures and high particle densities (chemical potentials) this
two-spin correlation function does not decay faster than some power of the
inverse distance between particles. This means that the two-dimensional
O(2)-symmetric spin ferrofluid with a short-range ferromagnetic interaction
manifests the Berezinskiı̆–Kosterlitz–Thouless phase transition. (15, 16) On the
other hand, for a long-range ferromagnetic interaction the model shows a
non-zero magnetic order parameter in this domain of temperatures and
chemical potentials. Since the particle density is bounded from above by the
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closest packing, the standard arguments (13) imply exponential decay of the
spin–spin correlations for high temperatures and any chemical potentials.

Notice that as in refs. 1 and 4, we study here only a problem of orien-
tational order in the spin subsystem. The question of correlation between
orientational and spatial orders is much more difficult even for lattice sys-
tems. (17–20) For correlations between orientational and spatial orders in mean-
field models of ferrofluids see, e.g., ref. 2. We would like to mention also a
recent progress concerning spatial order in spinless liquids. (21)

The paper is organized as follows: We give an explicit description of the
model in Section 2. In Section 3, we construct an auxiliary reference lattice
model to compare the spin–spin correlation functions in this model and in the
original continuum model. There, we apply a version of the G-G approach,
which in our case is based on Ginibre, instead of GKS, inequalities. (22) Finally
(Section 4) the Wells inequality (9) allows us to find a lower bound of the two-
spin correlation function in the auxiliary lattice system via the correlation
function of the lattice two-dimensional plane-rotator model. This, together
with the Fröhlich–Spencer result, (14) gives our main result. In conclusion
(Section 5) we make some remarks concerning the expected phase diagram of
our model.

2. THE MODEL

We consider a two-dimensional classical continuous system of identi-
cal particles with internal degrees of freedom f ¥ S1 (plane rotator) moving
in a bounded domain L … R2. A configuration of the system with n par-
ticles is denoted by

(Xn, Fn) :=(x1, f1;...; xn, fn) ¥ (L×S1)n, (2.1)

where fj=(cos hj, sin hj) ¥ S1. We write simply (X, F), with n=|X| to be
the number of particles, and we shall use the natural notations:

(X, F) 2 (X −, F −)=(x1, f1;...; xn, fn; x −1, f −1;...; x −n −, f −n −), (2.2)

and

(x, y, X, fx, fy, F)=(x, fx; y, fy; x1, f1;...; xn, fn). (2.3)

We assume that the particles interact via two kinds of two-body
potentials, i.e., the Hamiltonian of the system is composed of two parts:

HL(X, F)=U(X)+V(X, F), (2.4)
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where the first term represents a two-body spin-independent interaction:

U(X)= C
{xi, xj} …X

u(|xi−xj |), (2.5)

whereas the second term corresponds to the spin–spin interaction:

V(X, F)=− C
{xi, xj} …X

J(|xi−xj |)(fi, fj), (2.6)

with the scalar product (fi, fj)=cos(hi−hj). We put HL(X, F)=0 for
|X|=0, 1.

We assume that the two-body potential u and the spin–spin interaction
J satisfy the following conditions:

(u1) u(t)=. for t < 2R, i.e., each particle has a hard-core of radiusR;

(u2) u is a bounded measurable function on [2R,+.), and it
decreases as t−(2+e),, e > 0, for tQ.;

(J1) J(t) \ 0 for t ¥ [0,.) ( ferromagnetic interaction) such that

J0 := inf
0 [ t [ (4R+d) 51/2

J(t) > 0 (2.7)

for some d > 0;

(J2) the spin–spin interaction is regular in the sense that

||J||= sup
n \ 2, L

sup
Xn ¥ L

n
adm

C
xj ¥Xn 0{x1}

J(|x1−xj |) <., (2.8)

where Lnadm :={Xn=(x1,..., xn) ¥ L
n : |xj−xk | \ 2R} denotes the set of

admissible hard-core particle configurations. A simple example of regular
J(t) is given by a finite-range continuous interaction.

These conditions guarantee the convergence of the grand-canonical
partition function:

XL(b, m)=C
.

n=0

1
n!

F
(L×S1)n

dXn dFn ebmn−bHL(Xn, Fn) (2.9)

for the inverse temperature h−1=b > 0 and chemical potential m ¥ R, as
well as existence of the grand-canonical Gibbs measure on L

O−PL, b, m=XL(b, m)−1 C
.

n=0

1
n!

F
(L×S1)n

dXn dFn(−) ebmn−bHL(Xn, Fn) (2.10)
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and its infinite-volume limit Gibbs measure, see, e.g., ref. 13. Here dXn=
dx1 · · · dxn stands for the Lebesgue measure on R2n, and dFn=df1 · · · dfn,
where dfj=dhj/2p is the normalized invariant (Haar) measure on the unit
circle S1, and by definition we put HL(Xn, Fn)=0 for n=0, 1.

Notice that the properties (u1), (u2) imply the existence of the con-
stant A+ ¥ R such that

sup
n \ 2, L

sup
Xn ¥ L

n
adm

C
xj ¥Xn 0{x1}

u(|x1−xj |) [ A+. (2.11)

Hereafter we make use the following notations. Denote by G={Gn}n \ 0
a sequence of real measurable symmetric functions Gn=Gn(Xn, Fn) on
(R1×S1)n, for n \ 1, with G0 ¥ R1.

For any measurable K … R2, we introduce the set P(K) :=1.

n=0 K
n=

{”} 2P −(K), and we define:

F
P(K)
dX dF G(X, F) :=G0+C

.

n=1

1
n!

F
(K×S1)n

dXn dFn Gn(Xn, Fn)

=G0+F
P
−(K)
dX dF G(X, F).

Let {Kl}l ¥ L be a finite family of measurable non-intersecting subsets of R2.
Then one gets the following identity:

F
P(0l ¥ L Kl)

dX dF G(X, F)

=G0+ C
M ı L : M ]”

D
l ¥M

F
P
−(Kl)
dX(l) dF (l) G(XM, FM), (2.12)

where XM=1l ¥M X (l) and FM=1l ¥M F (l). Indeed, one gets formula (2.12)
by induction in the cardinality |L| of the set L. For example, let L={1, 2},
i.e., we have {K1, K2} with K1 5K2={”}. Then

F
P(K1 2K2)

dX dF G(X, F)

=G0+C
.

n=1

1
n!

F
(K1 2K2)

n
dXn F

(S1)n
dFn Gn(Xn, Fn)

=G0+C
.

n=1
C
n

m=0

1
m!(n−m)!

F
(K1)

m
dYm F

(K2)
n−m
dZn−m

×F
(S1)n
dFn Gn(Ym 2 Zn−m, Fn)

Berezinskiı̆–Kosterlitz–Thouless Order in Two-Dimensional O(2)-Ferrofluid 879



=G0+C
.

n=1

1
n!

F
(K1)

n
dYn F

(S1)n
dFn Gn(Yn, Fn)

+C
.

n=1

1
n!

F
(K2)

n
dZn F

(S1)n
dFn Gn(Zn, Fn)

+ C
.

m=1
C
.

n=1

1
m! n!

F
(K1)

m
dYm F

(K2)
n
dZn

×F
(S1)m+n

dFm+n Gm+n(Ym 2 Zn, Fm+n)

=G0+F
P
−(K1)
dY dF G(Y, F)+F

P
−(K2)
dZ dF G(Z, F)

+F
P
−(K1)
dY dF F

P
−(K2)
dZ dF G(Y 2 Z, F 2 F −),

which holds because of symmetry of the functions {Gn}n \ 0.
Let x ] y, and let the observable Fx, y={(Fx, y)n}n \ 0 be defined for

n \ 2 by

(Fx, y)n (Xn, Fn) := C
{xi, xj} …Xn

(fi, fj) d(x−xi) d(y−xj), (2.13)

and by (Fx, y)n=0, for n=0, 1. Then the two-spin correlation function in the
grand-canonical ensemble is the expectation of the functions (2.13) with
respect to the Gibbs measure (2.10):

OFx, yPL, b, m=XL(b, m)−1 F
P(L)
dX dF ebm |X|e−bHL(X, F)Fx, y(X, F)

=XL(b, m)−1 F
P(L)
dX dF F

S1
dfx

×F
S1
dfy(fx, fy) ebm(|X|+2)e−bHL(x, y, X, fx, fy, F). (2.14)

3. COMPARISON WITH A LATTICE MODEL

Let Z2a be a square lattice with side a=4R+d for some d > 0, cf. (2.7).
Let ia=((a1−

1
2 a), (a1+

1
2 a)]×((a2−

1
2 a), (a2+

1
2 a)] denote the semi-open
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plaquette with side a centered at site a ¥ Z2a. Below we consider connected
domain L … R2 which is a union of these non-intersecting plaquettes:

L=0
a ¥ L
ia, (3.1)

for a finite subset L … Z2a.
The aim of this section is to construct on the sublattice L … Z2a an

auxiliary lattice-gas O(2)-spin model, which gives an estimate of the corre-
lation function (2.14) from below, see Theorem 1. To this end we associate
with each plaquette a ¥ Z2a two random variables: na (lattice-gas occupation
number) and fa (spin orientation) taking their values in {0, 1} and in S1

respectively. Adapting the arguments of refs. 1 and 4 we shall prove that
there is a domain of (b, m) such that

OFx, yPL, b, m \ COnaxnay (fax , fay )PL, b, m0 , (3.2)

for some C > 0, m0 ¥ R independent of x, y and L. Here the sites ax and ay
are defined by the condition: ax={a ¥ Z2a : x ¥ia} and ay={a ¥ Z2a :
y ¥ia}. In the following we assume that x ] y are such that the corre-
sponding plaquettes iax , iay are distinct. The expectation value in the
right-hand side of (3.2) is over the Gibbs measure for the lattice-gas
ferromagnetic O(2)-spin Hamiltonian:

H0L(nL, fL) :=−
1
2 C
{a, a−} … L

J0aa−nana−(fa, fa−)−m0 C
a ¥ L
na (3.3)

with J0aa− \ 0 and the chemical potential m0.
We present our construction of this auxiliary model via the sequence

of the following

Remarks. (a) Since by (3.1) the domain L is the union of non-
intersecting plaquettes, one can use (2.12) to rewrite the two-spin correla-
tion function (2.14) in the form:

OFx, yPL, b, m=XL(b, m)−1 5F
S1
dfx F

S1
dfy(fx, fy) e2bme−bHL(x, y, fx, fy)

+ C
M ı L : M ]”

D
a ¥M

F
P
−(ia)
dX(a) dF (a) ebm |X

(a)|

×F
S1
dfx F

S1
dfy(fx, fy) e2bme−bHL(x, y, XM, fx, fy, FM)6
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This yields the representation:

OFx, yPL, b, m=XL(b, m)−1 C
M ı L

D
a ¥M

F
P
−(ia)
dX(a) dF (a) ebm |X

(a)|

×{e−bHL(XM, FM)O(fx, fy) | XMP Rx, y(XM)}, (3.4)

where we put

O(fx, fy) | XMP :=
>S1 dfx >S1 dfy >S|M| dFM(fx, fy) e−bV(x, y, XM, fx, fy, FM)

>S1 dfx >S1 dfy >S|M| dFM e−bV(x, y, XM, fx, fy, FM)
,

(3.5)

and

Rx, y(XM) :=eb{2m+U(XM)−U(x, y, XM)}
>S1 dfx >S1 dfy >S|M| dFM e−bV(x, y, XM, fx, fy, FM)

>S|M| dFM e−bV(XM, FM)
.

(3.6)

By estimates (2.8) and (2.11) we get the lower bound for (3.6):

Rx, y(XM) \ e2b{m−A+−||J||} :=C. (3.7)

By definition of (3.5) the right-hand side is the two-spin correlation func-
tion of a ferromagnetic lattice O(2)-spin model on the sites (x, y, XM).
Now with the estimate (3.7) in hand we return to the proof of the lower
bound (3.2).

(b) By the Ginibre inequalities for the plane-rotator ferromagnets, (22)

the expectation O(fx, fy) | XMP is an increasing function of the set of
ferromagnetic bonds {Jz, w}z, w ¥ (x, y, XM). Therefore, we get for it the estimate
from below:

O(fx, fy) | XMP \ O(fx, fy) | X
min
M P, (3.8)

where the configuration (x, y, XminM ) is obtained from (x, y, XM) by keeping
exactly one particle in each of non-empty plaquette {a ¥ L :ia 5 (x, y, XM) ]
{”}}={ax, ay} 2M. One can keep them arbitrary except in the plaquettes
iax , iay , where we must choose them coinciding with particles x, y.
Otherwise, the right-hand side in (3.8) will be identically zero.

(c) Using again the Ginibre inequalities we can make the right-hand
side of (3.8) lower, if we replace in the interaction V the ferromagnetic
couplings by J0aa−=infz ¥ia, w ¥ia−

J(|z−w|). The estimate runs in the same
direction if we put J0axay=J

0
axa
=J0aay=0 for a ¥M in the cases ax ¨M, or
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ay ¨M. Therefore, the right-hand side of (3.8) can be bounded from below
by the two-spin correlation function of a lattice system with sites localized
only on the non-empty plaquettesM ı L:

O(fx, fy) | X
min
M P \ O(fax , fay )PV0M :=OF0x, yPL, b (M), (3.9)

where expectation in the right-hand side of (3.9) is calculated with the
lattice-gas spin interaction:

V0M(fM) :=− C
{a, a−} …M

J0aa−(fa, fa−). (3.10)

Here again we put V0M=0 for |M|=0, 1.
Notice that the integration over dfx dfy implies that OF0x, yPL, b (M)

=0 unless (ax, ay) ¥M, or if |M|=0, 1.
(d) Since the lower bound in (3.9) depends only on M, we introduce

the grand-canonical partition function for a given configuration M of
occupied plaquettes by:

X(M) :=D
a ¥M

1F
P
−(ia)
dX(a) dF (a) ebm |X

a|2 e−bHL(XM, FM), (3.11)

with the convention X(”)=1. Then by (2.9), (2.12), and (3.1) one gets

XL(b, m)= C
M ı L

X(M). (3.12)

Therefore, from (3.4) and (3.11) we can estimate the two-spin correlation
function with the help of (3.8) and (3.9) as:

OFx, yPL, b, m \ C C
M ı L

Pb, m(M)OF
0
x, yPL, b (M), (3.13)

where

Pb, m(M) :=
X(M)
XL(b, m)

(3.14)

is the probability measure induced by {X(M)}M ı L.
(e) For a given configuration M ı L the spin partition function for

interaction (3.10) has the form:

ZM :=1 D
j ¥M

F
S1
dfj 2 e−bV

0
M(fM),
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with the usual convention ZM=”=1, and

pm0 (M) :=
ZMebm0 |M|

;M− ı LZM −ebm0 |M
−| (3.15)

defines the lattice-gas probability measure on L with chemical potential
m0 ¥ R.

Proposition 1 (Lebowitz inequality). For any finite m0 the prob-
ability (3.15) verifies the FKG-condition:

pm0 (M 2M −) pm0 (M 5M −) \ pm0 (M) pm0 (M
−). (3.16)

Proof. The proof follows through verbatim along the arguments of
ref. 23 with the substitution of the GKS inequality for ferromagnetic
systems by the Ginibre inequality for the model (3.10). By definition (3.15)
it is enough to prove that

F :=ln ZM 2MŒ− ln[ZMZMŒ/ZM 5MŒ] \ 0.

Let J0aa−=0 for all a ¥M 5MŒ and a − ¥MŒ0M. Then the inequality for F is
a consequence of the Ginibre inequalities. Since the Ginibre inequalities
imply also that

“F
“J0aa−
=O(fa, fa−)PV0M 2MŒ

−O(fa, fa−)PV0MŒ \ 0, (3.17)

F \ 0 holds for J0aa− > 0. L

Notice that inequality (3.17) express the monotonicity:

OF0x, yPL, b (M) [ OF0x, yPL, b (M
−), (3.18)

forM ıM −, which we have already discussed above in (b).

(f ) Since pm0 (M) > 0 we can represent the probability (3.14) as

Pb, m(M) :=f(M) pm0 (M). (3.19)

Lemma 1. The f(M) is monotonous increasing function of the
configuration M, i.e., f(M) [ f(MŒ) for M ıM − whenever (b, m) satisfies
for a given m0 the following condition:

eb(A++2 ||J||−m+m0) [ (a−4R)2. (3.20)
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Proof. By definition (3.19) the monotonicity f(M) [ f(MŒ) for
M ıM −, is equivalent to the inequality

ZM −ebm0 |M
−
0M|

ZM
[
X(M −)
X(M)

. (3.21)

LetM −=M 2 {j}. Then by (3.11) for exactly one supplementary particle in
the plaquetteij one gets the estimate:

X(M 2 {j})
X(M)

\ X−1M D
a ¥M

1F
P
−(ia)
dXa F

S|Xa |
dF(Xa) ebm |Xa |2 F

ij

dw F
S1
dfw ebm

×e−b{V(XM, FM)+U(XM)}e−b{V(w, XM, fw, FM)−V(XM, FM)}

×e−b{U(w, XM)−U(XM)}

\ e−b(−m+A++||J||)(a−4R)2 (3.22)

since at least a domain of the volume (a−4R)2 in the plaquette ij is free
for the particle w. Similarly we get from (3.10) that

ZM 2 {j}

ZM
ebm0 [ eb(m0+||J||). (3.23)

The estimates (3.22) and (3.23) give the inequality (3.21) forM −=M 2 {j}.
Iterating in j one gets it for anyM ıM −. L

Theorem 1. Let m0 be some fixed value. Then in the domain of
temperatures and chemical potentials defined by the condition (3.20) the
two-spin correlation function of the O(2)-ferrofluid is bounded from
below:

OFx, yPL, b, m \ C C
M ı L

pm0 (M)OF
0
x, yPL, b (M), (3.24)

where C is defined by (3.7).

Proof. Since the probability pm0 (M) verifies the FKG condition
(3.16) and both functions f(M) and OF0x, yPL, b (M) are monotonous
increasing withM, the FKG inequality (24) gives:

C
M ı L

pm0 (M) f(M)OF
0
x, yPL, b (M)

\ 3 C
M ı L

pm0 (M)OF
0
x, yPL, b (M)4 3 C

M ı L
pm0 (M) f(M)4 . (3.25)
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Then by the inequality (3.13) and the definition (3.19) one readily obtains
the lower bound (3.24). L

Remark 1. Let nL :={na}a ¥ L be the lattice-gas occupation-number
variables defined by

na(M)=˛
1, if a ¥M,
0, if a ¥ L0M.

(3.26)

Then interaction (3.10) takes the form:

V0M(fM)=− C
{a, a−} … L

J0aa−na(M) na−(M)(fa, fa−) :=V
0
L(nL(M) fL). (3.27)

With this notations we can rewrite the right-hand side of (3.24) as:

C
N … L
pm0 (N)OF

0
x, yPL, b, N=(ZL(b, m0))

−1 C
{na=0, 1 : a ¥ L}

F
(S1)|L|
1D
a ¥ L
ebm0na dfa 2

×naxnay (fax , fay ) e
−bV0L(nL, fL). (3.28)

This proves the result announced at the beginning of this section in (3.2),
(3.3) with H0L(nL, fL)=V

0
L(nL, fL)−m0 ; a ¥ L na.

The right-hand side of (3.28) is obviously identical to

(ZL(b, m0))−1 1D
a ¥ L

F
R
{d(ra)+ebm0d(ra−1)} dra F

S1
dfa 2

×rax ray (fax , fay ) e
−bV0L(rL, fL), (3.29)

where

ZL(b, m0)=1D
a ¥ L

F
R
{d(ra)+ebm0d(ra−1)} dra F

S1
dfa 2 e−bV

0
L(rL, fL),

and {dfa=dha/2p}a ¥ L , for ha ¥ [0, 2p], with (fax , fay )=cos(hax −hay ). We
use the representation (3.29) in the next section.

4. THE WELLS INEQUALITY AND POWER DECAY OF

CORRELATIONS

In this section, we apply the Wells inequality (9, 10) to obtain a lower
bound of (3.29) via the two-spin correlation function of the standard non-
dilutedO(2)-ferromagnetic model onZ2. Since we need an explicit quantitative
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estimate of domain of validity of this bound, we derive the Wells inequality
for the case of ferromagnetic plane rotators. In fact below we do this in a
more general setting than we need for our purposes.

Proposition 2 (Wells inequality for rotators). Let E=min{1/2,
b/(a+b)} with a, b > 0. Let the measure dnab(r)={ad(r)+bd(r−1)} dr.
Then for arbitrary subsets A … L one has the following inequality:

Z−1nab 1D
j ¥ L

F
R
dnab(rj) F

2p

0
dhj 2 rA cos hA e;B … L JB r

B cos hB

\ Z−1E 1D
j ¥ L

F
R
d(rj− E) drj F

2p

0
dhj 2 rA cos hA e;B … L JB r

B cos hB, (4.1)

where JC \ 0, rC=<j ¥ C rj, hC=; j ¥ C kC(j) hj with kC: CQ Z for any
C … L, and Znab , ZE are the corresponding normalizing factors.

Proof. We follow essentially the remarks in Appendix of ref. 10. By the
Ginibre method of duplicate variables, the inequality (4.1) is equivalent to

1D
j ¥ L

F
R
dnab(rj) F

R
d(rj− E) drj F

2p

0
dhj F

2p

0
dh −j 2

×(rA cos hA−rA cos h −A) e
;B … L JB(r

B cos hB+r
B cos h −B) \ 0.

Since,

rA cos hA−rA cos h −A

=(rA+rA) sin
h −A+hA
2

sin
h −A−hA
2
+(rA−rA) cos

h −A+hA
2

cos
h −A−hA
2

rB cos hB+rB cos h −B

=(rB+rB) cos
h −B+hB
2

cos
h −B−hB
2
+(rB−rB) sin

h −B+hB
2

sin
h −B−hB
2
,

after developing the exponent one gets that the integrand in the left-hand side
of the above inequality is a linear combination of terms which have the form:

1 D
C … L
(rC+rC)nC (rC−rC)mC 2 fnC, mC 1

h −C+hC
2
2 fnC, mC 1

h −C−hC
2
2 ,

where fnC, mC (j), as well as the product fnC, mC ((h
−+h)/2) fnC, mC ((h

−−h)/2),
are periodic functions with period 2p with respect to each of variables
jj, h

−

j, hj (j ¥ C) for all nC andmC.
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Now, by standard Ginibre’s arguments (see [22, Section 2]) one gets:

1D
j ¥ L

F
2p

0
dhj F

2p

0
dh −j 2 fnC, mC 1

h −C+hC
2
2 fnC, mC 1

h −C−hC
2
2 \ 0.

Then expanding

rC=D
j ¥ C

1rj+rj
2
+
rj−rj
2
2 ,

and

rC=D
j ¥ C

1rj+rj
2
−
rj−rj
2
2 ,

it is enough to show that for all non-negative integers k, l one has:

F
R
dnab(r) F

R
d(r− E) dr(r+r)k (r−r) l \ 0,

which is equivalent to

b(1+E)k (1− E) l+(−1) l aEk+l \ 0. (4.2)

This is true for even l. So let l be odd. Note that function [E/(1+E)]k

[E/(1− E)] l is increasing in E ¥ [0, 1) and non-increasing in k \ 0, l > 0 as
soon as E ¥ [0, 1/2]. Therefore, we have for those k, l and E:

1 E
1+E
2k 1 E
1− E
2 l [ E

1− E
. (4.3)

If E satisfies the conditions of our Lemma, the inequality (4.3) implies (4.2),
which proves the statement (4.1). L

Remark 2. According to (3.29) in our case A={ax, ay}, B={a, a −}
… L, hA=(hax −hay ), hB=(ha−h

−

a) and a=1, b=ebm0, i.e.,

E=min{1/2, 1/(1+e−bm0)}. (4.4)

Collecting the estimates and identities (3.24), (3.28), (3.29), (4.1), we
obtain the lower bound for the two-spin correlation function in the
ferrofluid:

OFx, yPL, b, m \ CE2
(<j ¥ L >S1 dfj)(fax , fay ) e

−bVE(fL)

ZL, E
:=CE2OFx, yPVE. (4.5)
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Therefore, this function is bounded from below by mean of the correlation
function of the O(2)-ferromagnetic model with interaction:

VE(fL) :=− E2 C
{a, a−} … L

J0aa−(fa, fa−). (4.6)

Using again the Ginibre inequalities, the correlation function in the right-
hand side of (4.5) can be bounded from below by the correlation function
of the nearest-neighbour ferromagnetic plane-rotator model on the lattice
L … Z2, i.e.,

OFx, yPVE \ OFx, yPVEnn , (4.7)

where

VEnn(fL) :=− E
2 C
Oa, a−P … L

J0(fa, fa−), (4.8)

and J0 :=J0aa− > 0 for |a− a −|=a by condition (J1). We thus arrive at our
main result:

Theorem 2. Let two-dimensional O(2)-ferrofluid model be defined
by the Hamiltonian (2.4) with interactions satisfying the conditions (u1),
(u2), (J1), (J2) for some a−4R=d > 0. If temperature and chemical
potential verify for some m0 \ 0 the condition

eb(A++2 ||J||−m+m0) [ d2, (4.9)

then there exists b0(d) > 0 such that the two-spin correlation function:

OFx, yPb, m := lim
LQ R

2
OFx, yPL, b, m (4.10)

of this model does not decay faster than some inverse power of |x−y| for
all b > b0(d).

Proof. Notice that by conditions of the theorem one has: J0 > 0, see
(2.7), and E=1/2, see (4.4). Therefore, by (14) there is b0(d) such that the
two-spin correlation function limLQ Z

2 OFx, yPVEnn does not decay faster than
some inverse power of |x−y| for low temperatures b > b0(d). Since the
condition (4.9) on the temperature and the chemical potential ensures the
lower bound (4.5) with C > 0, see (3.7), by the estimate (4.7) one gets the
same conclusion for the correlation function (4.10). L
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5. CONCLUDING REMARKS

1. Exponential decay for high temperatures. Notice that by the
Ginibre inequality the spin–spin correlation function (3.4) reaches its
maximum at the closed packed configuration (m=.). Since by standard
arguments for lattice systems (13) this function decays exponentially for suf-
ficiently high temperatures h > hg > h0 even for the closed packed configu-
ration, one gets the same decay everywhere in domain {−. < m <.}×
{h > hg}.

2. Algebraic decay for low temperatures. As we see from (4.9) the
best bound for the domain of algebraic decay corresponds to the choice
m0=0. For a given d > 0 By Theorem 2 the Berezinskiı̆–Kosterlitz–
Thouless phase is localized for a given d > 0 by the conditions:

{h : h < h0(d)} 5 {m : m \ A++2 ||J||−2h ln d} :=DBKTd . (5.1)

Note that by condition (J1) the increasing of d > 0, implies that J0 (and
temperature h0(d)) will decrease, for a monotonous decreasing function
J(t), see condition (J1). In particular, for a finite-range potential J(t) there
exist dmax such that J0=0 for d > dmax. We thus arrive at the (schematic)
phase diagram represented on Fig. 1, which corresponds to domain DBKT :=
1d > 0 DBKTd .

Fig. 1. Schematic phase diagram for two-dimensional ferrofluid of plane rotators.
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3. Long-range order for low temperatures. Let the potential J(t) be
a long-range one of the form:

J(t)=ot−(d+s), (5.2)

for o > 0 and 0 < s < d=2. Then by construction of the interaction J0aa−
one gets that

J0aa− \ o0(d) |a− a
−|−(d+s) :=JLRaa− (5.3)

for some o0(d) > 0. Denote the potential (4.6) with interaction JLRaa− by VELR.
Then by virtue of (5.3) and the Ginibre inequalities

OFx, yPVE \ OFx, yPVELR . (5.4)

Since by refs. 25 and 26 there exists b0(o0(d)) such that in the model with
interaction VELR one has the order parameter (magnetization) mE(b):

lim
|x−y|Q.

lim
LQ Z

2
OFx, yPVELR :=m

2
E (b) > 0 (5.5)

for all b > b0(o0(d)), by (4.5), (5.4), and (5.5) we conclude the same for our
ferrofluid model. Thus, for the long-range ferromagnetic interaction (5.2)
the two-dimensional O(2)-ferrofluid has in domain DLRO :=1d > 0 DLROd ,
the Long-Range Order parameter m(b, m) > 0:

m(b, m)2 := lim
|x−y|Q.

OFx, yPb, m \ CE2m
2
E (b) (5.6)

with E=1/2. Here

DLROd :={h : h < b−10 (o0(d))} 5 {m : m \ A++2 ||J||−2h ln d}. (5.7)

4. Dimensions d ] 2. Notice that by (25, 26) the statement above is also
valid for the long-range potential (5.2) when d=1. By the same authors it
is known that for low temperatures the Long-Range Order parameter
(magnetization) is non-null in the model (4.6) even for short-range interac-
tions if dimension d > 2. Then the estimate (4.5) implies that our ferrofluid
model (2.4) has a non-zero magnetization in domain (5.1).

5. Anisotropic rotators. We do not discuss here some straightfor-
ward (or less evident) generalizations of our main result to the case of non-
plane anisotropic rotators. (27, 28) We return to this question elsewhere.
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